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SUMMARY 

1. The main purpose of this report is to verify the rightfulness of application of Data 
Reconciliation and Validation methods (which were developed on the assumption 
of models’ linearity) to real industrial models which are mostly nonlinear.   

2. Three indicators of the influence of model’s nonlinearity of Data Reconciliation 
results were used: 

 Theoretical mean value of the least squares function (which equals to the 
Degree of Redundancy) was compared with the average of Qmin values 
calculated in MCM simulations 

 Theoretical value of the second central moment (variance) of the least 
squares function (which equals 2 times of the Degree of Redundancy) was 
compared with the average of Qmin variance in MCM simulations 

 Theoretical value of the probability of the Error of Ist Kind in testing the 
presence of a gross errors (which equals 5 %) was compared with the 
relative number of false Gross Error Detection in MCM simulations (in per 
cents). 

3. The main purpose of Chapter 5 was to verify that MCM methods used in RECON 

(generation of random variables, etc.) are sound. Calculations revealed that it is 

needed to make 10,000 MCM repetitions to get reliable results. The MCM 

analysis of a simple linear model has confirmed that the DRV methodology works 

and the results’ precision agrees with MCM results (Table 5-2). Also the Gross 

Errors Detectability method gives good results (Table 5-3). 

4. The core of the report is in Chapter 6. The spectrum of 12 nonlinear models 

covers typical DRV tasks we can meet in Chemical and Power Industries. Models’ 

characteristics are shown in Table 6-13. The typical type of nonlinearity is a 

product of two variables (bilinear models, namely multicomponent and heat 

balances). The nonlinearity in all cases did not caused significant deviations 

caused by models’ linearization during the DRV solution (Table 6-14).    

5. In Section 2.5 was proposed the practical and simple measure of models’ 

nonlinearity by Eq. (2-25). It is the relative improvement of the Least Squares 

function Qdifrel calculated by the Successive Linearization and then improved by 

the SQP method: Qdifrel  = (QminSL – QminSQP) / QminSQP. 

In Chapter 6 was shown that for most of industrial models the SQP method is not 

mandatory but in some cases it is required. This decision must be done 

experimentally, for example by the MCM method.   
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6. In Chapter 7 were analyzed two bilinear models as concerns the influence of 

measurement uncertainties on statistical results of DRV. It was concluded that 

there is no evidence of significant influence of measurement uncertainties on 

basic statistical characteristics of the data reconciliation process. 

7. In Chapter 8 was on 4 examples shown that MCM is a good method for testing 

models’ robustness. Random errors’ of measurements were be perturbed up to 5 

times of the original measurement uncertainties to test models’ robustness.         
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GLOSSARY AND ABBREVIATIONS 

MCM  Monte Carlo Method 

Recon Mass, energy and momentum balancing software with Data Validation and 

Reconciliation  

DoR  Degree of Redundancy 

DR  Data Reconciliation 

DVR   Data Validation and Reconciliation  

GED  Gross Error Detection 

NLP  Nonlinear Programming 

PDF  Probability Density Function 

PF  Perturbation Factor 

Qaver  average value of Qmin 

Qmin  the Least Squares sum 

Qcrit  the critical value of the Least Squares sum 

Qdifrel  relative difference of Qmin between SL and SQL methods (see Eq.(2-22) 

S  Status of Data Quality 

Saver  mean (expected) value of the Status 

SL  Successive Linearization 

SQP  Successive Quadratic Programming 

TV  Threshold Value 

VQaver average value of Qmin variance (the second central moment) 

% GED % of cases with detected Gross Error 

μ  Greek letter mu – mean value 

  Greek letter nu – Synonym for Degree of Redundancy (DoR) 

i   standard deviation of measurement error 

x’i   standard deviation of reconciled value 

vi  standard deviation of adjustment 
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1 INTRODUCTION 

Process Data Reconciliation (DR) accompanied by related techniques (Gross Errors 
Detection and Elimination, measurement points placement, etc.) is in practice based on 
statistical inference methods [1] using the family of probability distributions like Normal 
(Gauss) or Chi-square. For linear functions the Normal distribution of inputs remains 
Normal also for functions outputs. On the other hand side, most of models important in 
practice are not linear and their solution is based on their linearization. In such cases the 
reconciled values have Normal distribution no more, the same holds for Least Squares 
functions which are not distributed exactly Chi-square, etc. It is therefore legitimate to 
state a question: Is it justified to apply DR techniques to industrial models which are 
mostly nonlinear?  

The purpose of this report is to clear the importance of neglecting nonlinearity of models 
used in practice. Thus formulated problem is not easy to solve analytically and the 
Monte Carlo simulation [2] can be a good way to tackle this problem.  

Monte Carlo Method (MCM) is a mathematical technique used to estimate possible 
result of an uncertain event. The Monte Carlo Method simulation predicts outcomes 
based on a set of random input values. It recalculates the results over and over, each 
time using a different set of random numbers generated according to some probability 
distribution. The well known Normal (Gauss) distribution of measurement errors 
which is preferred in technical modeling (mass and energy balancing, thermodynamic 
calculations, etc.) will be used throughout this report. 

Application of the Monte Carlo Method (MCM) in studying DR is not new. Probably for 
the first time MCM was applied by Iordache et all [12] in studying the problem of the 
Gross Errors Detection test power. Ozyurt and Pike [13] studied by MCM extensively the 
efficiency of gross errors detection. Bagajewicz and Nguyen proposed to calculate the 
expected value of accuracy [14,15] by MCM. Syed et all used MCM to verify results from 
the linearized models of a gas turbine system, especially functioning of Gross errors 
detection [16]. Cencic and Fruhwirth [17] used the Markov chain Monte Carlo method for 
modeling non-normal distributions which are results of models nonlinearity and can’t be 
solved analytically. Wingstedt and Saarela used MCM to evaluate error propagation in 
computation of nuclear plant thermal power [18]. 

In this report four areas will be studied: 

 verification of internal statistical methods used in Recon for MCM 

 influence of model nonlinearity on Data Reconciliation results  

 influence of measurement uncertainties on reconciled results’ precision 
(confidence intervals) 

 robustness of Recon’s functionality in the presence of Gross Errors in input data. 

The subjects of the MCM will be random errors added to “errorless” values of measured 
variables (flowrates, temperatures, etc.). With this aid we will simulate the influence of 
measurement errors on final results.  
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It is clear that such solution can’t give a general answer for all possible models occurring 
in industrial practice. We have selected 12 model typical for Power generation, Oil 
refining, Petrochemical and Natural gas distribution industries. In what follows 7 simple 
models will be used to study MCM applied to typical process industries tasks (mainly 
unit operations in these areas). At the end 5 industrial size tasks will be analyzed (a coal 
fired steam generator with auxiliaries, a powerplant supercritical steam cycle, heavy 
crude vacuum distillation system, a steam generation system in a nuclear powerplant 
and Natural gas transport and distribution system with hydralics modeling).  

The modeling tool used in this report is the mass and energy balancing software with 
Data Reconciliation and Validation RECON® by ChemPlant Technology, s.r.o., see 
RECON | ChemPlant Technology - process data information systems, mass and energy 
balancing software. RECON in its Lite version can be here freely downloaded. The Lite 
version makes possible calculation of most of examples presented further in this report. 

 

  

https://www.chemplant.cz/inpage/recon/
https://www.chemplant.cz/inpage/recon/
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2 MODELING INDUSTRIAL PROCESS SYSTEMS BY RECON 

The next Chapter 2 summarizes briefly theory of DR including some more advanced 

methods like measurement errors propagation and the Power of testing hypotheses 

about gross errors. There are many good books devoted fully or partially to these 

subjects [3-10]. There is also practically oriented report [11] available free from Internet 

at Papers and reports | ChemPlant Technology - process data information systems, 

mass and energy balancing software. The notation in this report is taken over from the 

book [4].  

2.1 Models 

It is universally accepted that any measurement is charged with some error. The 

measurement error is defined by the following equation. 

 

x+ =  x  +  e          (2-1) 

 

where x+ is the measured value  

 x is the true (unknown) value 

 e is the measurement error 

Most frequently is supposed that e is a random variable with the Normal distribution with 

zero mean value characterized by the standard deviation  . In practice the standard 

deviation is supposed to be related with the measurement tolerance or the maximum 

measurement error. The measurement uncertainty (maximum measurement error is the 

term used in Recon) is taken as 1.96 multiple of   (this stems from the Normal 

distribution and the probability level 95 %). 

Note: The nomenclature here is not unified. The notion measurement uncertainty has also the synonym 

measurement tolerance. In Recon used maximum measurement error has the same meaning. 

Let us start from the mathematical model   

F(x,y,c) = 0         (2-2) 

where F( ) is the vector of implicit model equations (generally nonlinear) 

 x     is the vector of directly measured variables  

https://www.chemplant.cz/inpage/papers-and-reports/
https://www.chemplant.cz/inpage/papers-and-reports/
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 y     is the vector of directly unmeasured variables 

 c     is the vector of precisely known constants  

The starting point for the following solution is the solvability analysis of a set of linear 

equations in variables representing measured and unmeasured variables. The important 

simplification of the nonlinear model (2-2) is so-called General Linear model  

 

A’x  + By  + a  =  0         (2-3) 

 

where  

x is  vector of measured variables 

y   vector of unmeasured variables 

a vector of constants 

A’ and B are matrices of constants 

The General Linear model can be further simplified by elimination [4] of unmeasured 

variables to the form containing only measured variables (note that matrices A and A’ 

are different): 

 

Ax + a  =  0           (2-4) 

 

2.2 Data reconciliation 

Eq. (2-2) holds for the true (unknown) values of the variables. If we replace them by the 

measured values x+, the equations need not (and most likely will not) be exactly 

satisfied:  

 

F(x+,y,c) ≠ 0         (2-5) 

 

whatever be  the values of the unmeasured variables (unless the degree of redundancy 

equals zero). 
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The basic idea of DR is the adjustment of the measured values in the manner that the 

reconciled values are as close as possible to the true (unknown) ones. The reconciled 

values xi‘ (marked by apostrophe) result from the relation 

xi‘ = xi
+  + vi   ,      (2-6) 

where to the measured values, so-called adjustments  vi are added. In the ideal case, 

these adjustments should be equal to the minus errors, but these are unknown. If, 

however, we have the mathematical model that must be obeyed by the correct values 

then the optimal solution is as follows: 

The adjustments must satisfy two fundamental conditions: 

1) The reconciled values obey Eq. (2-2) – we say that they are consistent with the model   

 

F(x‘,y‘,c) = 0         (2-7) 

 

2) The adjustments are minimal. Most frequently, one minimizes the weighted sum of 

squares of the adjustments using the well-known least squares method  

minimize          (vi /i)
2  =   [(xi‘ - xi

+)/i]
2.    (2-8) 

 

where vi  = xi‘ - xi
+ are so called adjustments. 

The inverse values of the standard deviations i
2 – so-called weights –  then guarantee 

that more (statistically) precise values are less corrected than the less precise ones (this 

is a relevant property of the method). 

The least squares function (2-6) is used in the case of uncorrelated (statistically 

independent) errors. In the case of correlated errors a more general criterion is 

minimized: 

 

minimize   vTF -1v       (2-9) 

 

where v is vector of adjustments and F is the covariance matrix of measurement errors.  

The reconciliation proper is an optimization problem requiring computer technique and 

effective software. In contrast to many other engineering calculations, the DR cannot be 

carried out manually (using a pocket calculator) even with very simple models.  
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The mathematics of the solution itself was in the last decades many times described in 

the literature (e.g. [3-11]) and will not be mentioned in the sequel.  

So let us further suppose that at our disposal is the program RECON ready to use for 

DR. Schematically, it is the Data Reconciliation Engine depicted in the following figure. 

    

Fig. 2-1: The Data Reconciliation Engine 

 

The model (2-4) is used for DR proper. In the first step the adjustments v are calculated 

according to the equation 

 

v = - FXAT(AFxA
T)-1(a +Ax+)       (2-10) 

 

Reconciled values x’  are then calculated from the equation 

 

x’ = x+ + v          (2-11) 

 

by substitution from Eq. (2-10).  

2.3 Statistical properties of results 

 

Adjustments v have the normal distribution N(0,Fv) and the covariance matrix of 

adjustments Fv 
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Fv = FxA
T(AFxA

T)-1AFx        (2-12)  

     

The Quadratic form of adjustments (2-8) or (2-9) is the random variable with 
2 (1-)() 

distribution with  degrees of freedom. Values of 
2 (1-)() for probability (1-) are 

tabulated in statistical tables.  

Between covariance matrices of measurement errors F, adjustments Fv and reconciled 

values Fx’ holds the important relation 

 

F = Fv + Fx’          (2-13) 

 

For variances of measurement errors, adjustments and reconciled values therefore hold 

 

 i
2 = vi

2 + x’i
2           (2-14) 

 

Square roots of variances (standard deviations) of reconciled values are important for 

estimating confidence intervals for results.  On assumption of normal distribution of 

measurement errors it holds that with the probability 95 % the intervals 

 

<xi’ – 1.96 x’i  ; xi’ + 1.96 x’i  >       (2-15) 

 

cover the (unknown) true values of individual variables.  

Reconciled data are more precise in the statistical sense, if compared with the 

measured ones. The enhanced precision can be quantified with the aid of the standard 

deviation of the reconciled value, which is always smaller than the standard deviation of 

the measurement error.  
 

x’  <              (2-16) 

 

The measure of the precision improvement is so-called adjustability defined as 

 

a  =  1  -  x’ /          (2-17) 

 

The adjustability characterizes the reduction of the standard deviation and thus also the 

uncertainty of the result, if compared with the primary measurement. If for example the 



Data Reconciliation and Monte Carlo Method               ChemPlant Technology, s.r.o. 

    13 

 

adjustability of the reconciled value is 0.5, the uncertainty has been reduced by half. 

Adjustability 0.75 means reducing the uncertainty by a quarter, and so on. The greater 

the adjustability is, the greater is also the reduction of the uncertainty.  

2.4 Detection of gross errors 

The most frequently used method for Gross Errors Detection (GED) is the test based on 

the value the least squares function (2-8) or (2-9). The Quadratic form of adjustments (2-

8) or (2-9) is the random variable with 
2 (1-)() distribution with  degrees of freedom. 

Values of 
2 (1-)() for probability (1-) are tabulated in statistical tables.  

If the value of the minimal value of the least squares function is denoted as Qmin, 

 

Qmin = vTF -1v ,        (2-18) 

 

with probability  (1-) the value of Qmin will be less than the critical value of the 
2

distribution with  degrees of freedom. 

 

Qmin < 
2 (1-)()   =   QminCrit      (2-19) 

 

Number of degrees of freedom  is in DR solutions called Degree of Redundancy 

(DoR). In most cases it holds that  

DoR = Number of model equations – Number of unmeasured variables  

Probability level (1-) is usually supposed in technical sciences to be 0.95 (95 %) and 

this value will be used also throughout this report). All this holds on assumptions that 

only random errors with the Normal distribution are present. 

Recon uses for GED slightly modified approach. The Status of Data quality S is defined 

as 

 

S  =  Qmin / QminCrit        (2-20) 

 

Then the Eq. (2-19) reads 
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S  < 1          (2-21) 

 

If S less than one, no gross error is detected.  

The S definition has the advantage for an end DR user who does not need to know 

critical values for Qmin at different degrees of freedom. In words, a gross error is 

detected when the Status of Data Quality is equal or greater than 1. Mean (expected) 

values of S are presented in Table 3.1 in the next Chapter. 

It may be useful to note that the probability  is the expected probability of the Error 

of Ist kind (a Gross Error is detected even if it is not present). In this report is 

supposed that  is 0.05. This means that we can expect 5 % of cases a gross error is 

detected even if it is not present.  

Gross errors detectability 

Gross errors detectability means that a gross error of some size will be detected with 

some probability. This problem is solved by so called threshold values which are 

characteristic for every measured redundant variable.   

Let’s recall the Eq. (2-1) defining a random error and let’s modify it to the form 

x+ =  x  +  e  +  d ,       (2-22) 

where d  is a gross error (which is a constant).  
One has to begin with testing  the gross error presence hypothesis.  

As any statistical test, also the 2  test has its power characteristic : 
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Fig. 2-2: The power characteristic of the 2  test 

On the  x - axis, we have the magnitude of the gross error d, on the  y - axis the 

probability  P of the gross error detection. The value given by the power characteristic 

for an adjustable measured variable equals the significance level  of the test assuming 

the absence of gross error (d=0), and it approaches 1 for high values of the gross error  

(d).  

The power characteristic represents though complete, still too complicated information 

for the application in practice (imagine hundreds of such lines in a real size problem). 

More simple is the characteristic of measured variables by means of a single number, 

so-called threshold value (TV) for the gross error detection. 

TV is the value of gross error that will be detected with probability  (we'll further 

assume  = 0.9). TV is a characteristic value for any measured adjustable variable. The 

smaller TV , the better. TV is called the threshold value. 

The threshold value is computed from the equation 

qi  =  (,)/[ai(2-ai)]
1/2       (2-23) 

where qi  is dimensionless threshold value  TV/ 

qi  = TVi/i         (2-24) 

and  (,)  is a constant, characteristic for the significance level  of the chi-square 

test, degree of redundancy  and probability of the gross error detection . For more 

details, see the literature [4], p. 177. 

Values of (,) for   = 0.05 ,  = 1,2,…,500 and   = 0.90, 0.95 and 0.99 are 

presented in [19] 

1.0 

 

 

0 d 
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P 
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Let us notice that for a measured variable, the threshold value is a simple function of its 

adjustability defined by Eq. (3.5-2); see also the following figure.  

 

Fig. 2-3: Dimensionless threshold value q as function of the degree of redundancy  and 

adjustability  a (for =0.05 and =0.9) 

From this diagram, one can derive certain simple conclusions: 

 The greater  the adjustability is, the greater is also the probability that the gross error 
will be detected (low value of threshold error)  

 For adjustability smaller than 0.01, the probability of gross error detection is very 
small and decreases further rapidly 

 The minimum threshold value equals 3.24 times the standard deviation of the 

measurement (this in the case of  = 1 and adjustability = 1 , where q equals the 
minimum value  3.24). Considering that the maximum measurement error is taken as 
1.96 times the standard deviation, the minimum threshold value results as 1.65 times 
the maximum measurement error. From this finding follows that the method for gross 
error detection is not omnipotent even under optimal conditions and is effective only 
for gross errors significantly greater than supposed measurement uncertainty.   

2.5 DR solution by Recon 

There exist two basic methods of Data Reconciliation applied to nonlinear models: 

 Successive Linearization (SL) 

 Nonlinear programming (NLP). 

SL method is based on linearization of the model by the first order Taylor expansion. 

After the least squares solution on such linearized model is solved, this process is 

repeated from this new point. The iterative process is ended after equation values are 

zeroed (equations residuals are below some specified values). In Recon is watched also 
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condition of minimal increments of measured and nonmeasured variables in individual 

iterations. 

The SL method is very fast like other Newton-like methods but the problem is that for 

nonlinear models it does not find the exact Least Squares minimum. The distance from 

the LS minimum depends on the model nonlinearity and on the distance of measured 

values from the LS minimum. Recon therefore combines the SL method which finds the 

first solution and then applies the NLP (the ChemPlant’s proprietary version of the 

Sequential Quadratic Programming - SQP). 

In practice, for most models the SQP step is not needed as the SL method finds the 

solution which is very close to the global minimum. The SQP step is the option which 

can be used in DR with difficult models. See also the discussion about Example 2.2. 

below. 

Let’s illustrate DR on two very simple examples: 

Example 2.1: Linear model 

The model is very simple. There are two measured variables X1 and X2 and the model 

is (let’s imagine two flowmeters on one pipe). 

X1 – X2 = 0 

Let the measured values are 

X1 = 1 

X2 = 0.5 

Both flowmeters have the same uncertainty. The solution is shown in the next figure: 

 

 

Fig. 2.4: DR - Linear model 

(1; 0.5) 

0.5 1 

1 

0.5 

0 

0 

X2 = X1 

X2 ↑ 

→ X1 
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The solution is found in one step: 

X1 = 0.75 

X2 = 0.75 

The solution (arrow) is perpendicular to model line X1 – X2. 

 

Example 2.2: Nonlinear model 

This model is Parabola 

X1*X1 – X2 = 0  or  X2 = X12 

The uncertainties for both variables are 0.1. 

There are 4 sets of measured values which are in the different distance from the model 

curve (Medium distance 1, Medium distance 2, Far distance, Near distance). See the 

next Table: 

 

Tab. 2.1: Data reconciliation of the parabola model 

Data set X1 

Meas. 

X2 

Meas. 

Qmin 

SL 

Qmin 

SQP 

X1 SL X1 

SQP 

X2 SL X2 

SQP 

Near distance  1 1.1 0.745 0.744 1.039 1.040 1.080 1.081 

Medium distance 1 2 5.932 5.836 1.348 1.365 1.818 1.864 

Far distance 1 2 1 3.233 3.170 1.116 1.171 1.246 1.371 

Far distance 2 0.5 2.5 585 406 1.225 1.473 1.502 2.169 

 

See also the next Figure: 
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a)                                                                      b) 

Fig. 2.5: DR - Nonlinear model (parabola). a) final SL+SQP solution for 4 data sets,      

b) Detail of SL and SQP solution for the Far distance 2 data. 

In Fig. 2.3 a) the arrows show the final DR solution by the SQP method. Fig. 2.3. b) 

shows the solution details – the SL method with the following SQP for the Far distance 2 

data (0.5; 2.5). The first SL solution finds the solution which lies on the model curve. 

Then is applied the SQP method which finds the solution with the minimum Least 

Squares sum. In the next Recon report is the course of iterations.  

 

 Task: _PARABOLA05-25 (parabola) 

 

 I T E R A T I O N S 

 

 Iter            Qeq            Qx              Qy            Qmin 

 ----------------------------------------------------------------- 

 START     2.2500E+00 

    1      1.2656E+00    7.9510E-01      0.0000E+00      9.7240E+02 

    2      1.2656E-01    1.8601E-01      0.0000E+00      6.2352E+02 

    3      1.8631E-03    2.3181E-02      0.0000E+00      5.8557E+02 

    4      4.3235E-07    3.5158E-04      0.0000E+00      5.8501E+02 

    5      6.0338E-02    3.2496E-01      0.0000E+00      4.2258E+02  SQP 

    6      3.3825E-04    9.7037E-03      0.0000E+00      4.0711E+02 

    7      7.0272E-04    2.9327E-02      0.0000E+00      4.0578E+02  SQP 

    8      4.8957E-08    1.1296E-04      0.0000E+00      4.0561E+02 

    9      1.7391E-06    2.0310E-03      0.0000E+00      4.0560E+02  SQP 

   10      8.1015E-12    2.7937E-07      0.0000E+00      4.0560E+02 
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 Legend: 
 Qeq    mean residual of equations 

 Qx      mean increment of measured variables in iteration 

 Qy      mean increment of non-measured variables in iteration 

 Qmin  least-square function 

 

Let’s note that the measured data X1 and X2 are far from the model (parabola), the 

Qmin = 405.6 which is much higher that than the critical value for one degree of freedom 

(3.84). The limits on Qeq and Qx were set at 0.001. The SL process required 4 iteration 

to reach the solution with Qmin = 585.01. The first SQP run required 2 iterations to 

reach Qmin = 407.11. The improvement by 2 following SQP runs is only symbolic 

(405.60).  

Let’s discuss differences in Qmin (which is important for gross errors detection) and also 

the reconciled values of X1 and X2 proper. More details are in Tab. 2.1. above. It can be 

seen that for the Near distance point (1;1.1) the difference of Qmin between SL and SQL 

methods is negligible. The same hold for reconciled values, which differs only in the last 

valid digit. For Medium distance point differences between SL and SQL are in the range 

of several per cents of reconciled values which are not negligible. The Far distance point 

(0.5; 2.5) gives SL and SQL results significantly different for Qmin and also for 

reconciled values. For completeness is presented the course of iterations of the DR 

process for the SL method followed by SQP: 

Discussion about Example 2.2 results: 

1. Differences of results between SL and SQL methods depend on model 

nonlinearity and also on the distance of measured data from reconciled values 

(on data adjustments). 

2. From another point of view, it is good to have some simple indicator of model 

nonlinearity which includes also the distance of measured data from the model. 

This distance depends also on uncertainties of individual measured values. We 

propose the following relative difference of Qmin denoted as Qdifrel: 

 

Qdifrel  = (QminSL – QminSQP) / QminSL   (2-25) 

  

It is clear that for linear models the value of Qdifrel must be zero. Values of Qdifrel for 

nonlinear data sets in this Example are shown in the next Table: 
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Table 2.2: Qdifrel  for Example 2.2 

Data set Qdifrel 

Near distance  0.001 

Medium distance  0.016 

Far distance 1 0.020 

Far distance 2 0.437 

 

3. Probably it is not possible to set some exact limit of Qdifrel for which the SL method 

should be followed by the SQP method. It was shown that even for small values 

of Qdifrel differences in reconciled values by SL or SQP were not negligible. So we 

recommend to check for some time Qdifrel either by the MCM or in a model on-line 

implementation. In practice most of models have Qdifrel  well below 0.01, see the 

next Table: 

 

Table 2.3: Values of Qdifrel for models tested in this report (Chapter 6)  

Subsection Qdifrel Subsection Qdifrel 

6.2.1 0.0002 6.3.5 0.0000 

6.2.2. 0.0039 6.4.1 0.0197 

6.3.1 0.0017 6.4.2 0.0001 

6.3.2 0.0007 6.4.3 0.0294 

6.3.3 0.0000 6.4.4 0.0000 

6.3.4 0.0002 6.4.5 0.0001 

 

But in two industrial size cases the Qdifrel was higher than 0.01 (the coal fired boiler with 

accessories and the heavy crude oil vacuum distillation system). The SQP solution is not 

always essential but in some cases it should be used.  
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3 RANDOM NUMBERS AND PROBABILITY DISTRIBUTIONS 

This short Chapter describes how measurements with “random” errors are in RECON 

generated. 

3.1 Random errors with the Uniform distribution 

Uniform distribution 

The distribution of a random variable is called uniform (rectangular), if the probability 

density is constant on the whole interval of values the variable can assume. Thus if the 

range of values of the random variable is the interval <a, b> then the probability density 

function (PDF) equals. 

f (x) = 1 / (b - a)   for x ∈ <a, b>     (3-1) 

f (x) = 0    otherwise 

and the distribution function is 

 0     for x ∈ < a 

 F (x) = (x - a) / (b - a)  for a ≤ x≤ b 

 1     for x > b 

Both functions are depicted on Fig. 3.1. The basic characteristics satisfy 

 E (x) = (a + b) / 2         (3-2) 

 D (x) = (b - a)2 / 12         (3-3) 

 

 
Fig. 3.1:  Uniform (rectangular) distribution [probability density function f (x) and 

distribution function F (x)] 
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Uniformly distributed errors play some role in industrial practice (for example it is the 
distribution of errors when some unmeasured level fluctuating in some interval in a tank 
is neglected in the mass balance). This distribution is also important for generating other 
distributions by software generators of pseudorandom numbers (namely generating the 
Normal distribution). The function generating the Uniform distribution for a = 0 and b = 1 
is available as the standard function in the MS Visual Studio developing package used 
in RECON (function RND(x)). 

3.2 Random errors with the Normal (Gauss) distribution 

Normal (Gauss) distribution 

The normal distribution is the most important distribution of a continuous random 

variable; under certain circumstances, also some other distributions can be 

approximated as normal. The probability density of the normal distribution is given by the 

function. 

 𝑓(𝑥) =
1

𝜎(2𝜋)1/2 exp [−
(𝑥−𝜇)2

2𝜎2 ]      (3-4)  

   

The function is characterized by two parameters, 𝜇 and 𝜎, where 𝜇 equals the mean and  

𝜎 the standard deviation of the random variable. The normal distribution is written briefly 

as N (𝜇, 𝜎2). The probability density function is shown in Fig.3.2.   

If 𝜇 = 0 and 𝜎 = 1, one speaks of the standard normal distribution N (0,1). 

 

 
Fig. 3.2: Standard Normal (Gauss) PDF 
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For generating the Normal distribution Recon uses the Box – Muller method in its “polar” 
form [20]. 

The calling of the Normal distribution generation function contains two parameters: 

 measured value (mean value of the distribution) 

 standard deviation of the measurement error (sigma). 

3.3 Chi - square distribution 

Let us have 𝜐 random variables U1, …, 𝑈𝜐, mutually uncorrelated, each of them having 

the distribution N(0, 1). The random variable 𝜒2 defined as the sum of squares of the 

random variables 

 𝜒2 = 𝑈1
2 + … +  𝑈𝜐

2         (3-5) 

has the chi-square distribution with 𝜐 degrees of freedom, denoted by 𝜒2(𝜐). The 

diagrams of the probability densities of the 𝜒2 distributions for several degrees of 

freedom are shown in Fig. 3.3.  

The mean E [ ] and variance D [ ] satisfy relations 
 

E [ 𝜒2(𝜐)] =              (3-6) 

D [2 (v)] = 2        (3-7) 

 

 
Fig. 3.3: Examples of Probability density functions of the 𝜒2 distribution. 
 
The quantiles are given in Tab. 3.1. 
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Table 3.1: Quantiles of 𝜒2 distribution Qcrit  

 Qcrit (95%) Saver  Qcrit (95%) Saver 

1 3.84 0.260 16 26.30 0.608 

2 5.99 0.334 17 27.59 0.616 

3 7.82 0.384 18 28.87 0.623 

4 9.49 0.421 19 30.14 0.630 

5 11.07 0.452 20 31.41 0.637 

6 12.59 0.477 21 32.67 0.643 

7 14.07 0.498 22 33.92 0.649 

8 15.51 0.516 23 35.17 0.654 

9 16.91 0.532 24 36.15 0.664 

10 18.31 0.546 25 37.65 0.664 

11 19.58 0.562 26 38.89 0.669 

12 21.03 0.571 27 40.11 0.673 

13 22.36 0.581 28 41.34 0.677 

14 23.69 0.591 29 42.56 0.681 

15 25.00 0.600 30 43.77 0.685 

Explanation for Table 3.1: 

         No of Degrees of Redundancy = mean (expected) value of Chi-square distribution 

Qcrit critical value chi-square distribution for 95 % confidence 

Saver mean (expected) value of the Status of Data quality). The Critical value of Saver= 1 

irrespective on  

 

In Chapter 2, Eq.(2-20) was defined the Status of Data Quality S. The mean (expected) 
value of S is  

 

E[S(ν)]  =  E[Qmin] / Qcrit  =   / Qcrit      (3-8) 
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4 RECON’S MONTE CARLO FUNCTIONALITY 

4.1 The Base case Data Set 

MCM requires some prerequisites. The first one is the Base Case model which 

represents the errorless set of measured data (and of course first guesses of 

unmeasured variables which will be results of modeling). It is required that the Base 

Case data set fits exactly the model (all model equations must be zeroed). After that 

random errors can be added to the Base Case measured data for the MCM Simulation. 

This state can be achieved by the menu Updating guesses of unmeasured variables and 

by replacing the original measured values by reconciled values. This is achieved by the 

menu Calculate/Update guesses. See the following Example 4.1: 

 

Example 4.1: Creating the Base Case data set 

Let’s take the Recon Demo example MC-2.  

 

Fig. 4-1: Mass balance flowsheet (4 nodes, 6 measured and 2 unmeasured streams) 

The original example results are 
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RECON 11.9.7-Pro  [ChemPlant Technology s.r.o.] 

 Task: MC-2 (Single-component balance) 

 

 I T E R A T I O N S 

 Iter            Qeq            Qx              Qy            Qmin 

 ----------------------------------------------------------------- 

 START     1.4944E+01 

    1      3.5527E-15    3.0571E-01      2.7931E+01      1.3081E+00 

    2      3.5527E-15    2.0136E-15      5.1227E-16      1.3081E+00 

 

M A S S   F L O W R A T E S 

 Name             Type      Inp.value      Rec.value      Abs.error 

 ------------------------------------------------------------------ 

 S1               MC          100.100         99.287          1.300  KG/S   

 S2               MN           41.100         41.100          1.644  KG/S   

 S3               MC           79.000         79.359          1.239  KG/S   

 S4               MC           30.600         30.048          2.533  KG/S   

 S5               MC          108.300        109.407          2.632  KG/S   

 S6               MC           19.800         19.927          0.755  KG/S   

 S7               NO           10.000         58.187          2.096  KG/S   

 S8               NO           10.000         38.259          2.058  KG/S   

 

In this example measured values are reconciled and unmeasured variables are 

corrected from their first guesses to proper values. After that we can use the menu 

Updating guesses.  Two message boxes appear on the screen. 

  

Accept OK/Yes  for both questions. After the new calculation the following results 

appear: 

 

RECON 11.9.7-Pro  [ChemPlant Technology s.r.o.] 

 Task: MC-2MONTECARLO (Single-component balance) 

 

 I T E R A T I O N S 

 Iter            Qeq            Qx              Qy            Qmin 

 ----------------------------------------------------------------- 

 START     2.5121E-15 

    1      0.0000E+00    0.0000E+00      3.5527E-15      0.0000E+00 

 

 M A S S   F L O W R A T E S 

 

 Name             Type      Inp.value      Rec.value      Abs.error 

 ------------------------------------------------------------------ 

 S1               MC           99.287         99.287          1.299  KG/S   

 S2               MN           41.100         41.100          1.644  KG/S   

 S3               MC           79.359         79.359          1.240  KG/S   

 S4               MC           30.048         30.048          2.509  KG/S   

 S5               MC          109.407        109.407          2.616  KG/S   

 S6               MC           19.927         19.927          0.759  KG/S   

 S7               NO           58.187         58.187          2.095  KG/S   
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 S8               NO           38.259         38.259          2.059  KG/S   

You can see that the input data completely fit the model and no reconciliation is needed. 

This is the Base Case (“errorless”) data set suitable for MCM. 

Note: Realize that by this operation you have irreversibly lost the original measured data 

(you can try it on the model file copy). 

4.2 MCM Simulation 

After creation of the Base Case data set and calculation of the task is possible to do 

MCM Simulations. This is enabled by the menu Calculate/Monte-Carlo analysis. The 

following panel appears: 

 

Fig. 4-2: Panel for configuring MCM Simulation 

The following functions are available: 

 Selecting number of steps (simulations) 

 Using the SQP method 

 Selecting of the Perturbation Factor in the range <0.5 – 5> 

 Creating the MS Access Database for archiving results 

 Seeing trends MCM variables. 

The Perturbation Factor (PF) serves for changing the magnitude of errors added to 

measured data from the Base Case data set. PF = 1 means that random errors are 

generated from the original set of measured data sigmas. Higher values of PF are used 



Data Reconciliation and Monte Carlo Method               ChemPlant Technology, s.r.o. 

    29 

 

for the simulation of large gross errors (the original sigmas are multiplied by PF, this 

serves mainly for testing models’ robustness). 

All results can be saved to the Recon’s MS Access Database. Trends of variables can 

be seen after pressing the Trends button. The result of the model presented in Fig. 4.1 

follows: 

ANALYSIS BY MONTE-CARLO METHOD 

============================== 

 

      Step         Status (S)          Iter.count     Remark                     

  -------------------------------------------------------------------- 

         1              0.170                   4                                

         2              0.433                   4                                

         3          4.1466E-3                   4                                

         4              0.157                   4                                

         5              0.478                   4                                

         6              0.057                   4                                

         7              0.200                   4                                

         8          3.6051E-3                   4                                

         9              0.418                   4                                

        10              1.984 !                 5     Gross Error                

  -------------------------------------------------------------------- 

     S-AVG              0.391 Average Status                                     

     S-MAX              1.984 Maximum Status          Step 10                    

     S-BAD (>1)       10.00 % Gross Error detected                               

                                                                                 

  Qmin-AVG              1.500 Average Qmin                                       

 Qmin-CRIT              3.840 Qmin critical                                      

  Qmin-VAR              5.079 Qmin variance                                      

       DoR                  1 Degree of redundancy                               

    S-MEAN              0.260 DoR/Qmin-CRIT                                      

  -------------------------------------------------------------------- 

This is the result of MCM Simulation (10 steps).  

 In the Status column are values of Statuses of data quality. The last step value is 
greater than 1 – a gross error was detected! Further are shown the Average and 
Maximum Status values. The S-BAD shows the number of data sets with 
detected gross error(s) in per cents. As there was no Gross Error present, this is 
the case of the Error if the Ist kind. 

 The column Iter.count shows number of iterations needed for the task 
convergence 

 The Time stamp column shows the Date/Time under which results are saved in 
the Access database for the further analysis. This functionality is important for 
example for analyzing cases when the calculation did not converged. 

 Further lines have the following meaning: 
o Qmin-AVG             Average Qmin                                       

o Qmin-CRIT            Qmin critical (constant)                                     

o Qmin-VAR             Average Qmin variance                                      

o DoR                  Degree of redundancy (constant)                               

o S-MEAN               DoR/Qmin-CRIT (constant for given DoR)                                      
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Fig. 4.3: Trend of measured and reconciled values of the stream S1 flowrate (50 
simulation runs) 
 
It is possible to download data for the individual simulation steps to Recon a analyze 
more deeply possible problems in individual steps. 
 
In what follows the influence of models’ nonlinearity on DR results will be characterized 

by the difference between 

 

 Theoretical mean value of the least squares function (which equals to the Degree 

of Redundancy) and the average of Qmin values calculated in MCM simulations 

(see Eq.(3-6)) 

 Theoretical mean value of the variance of the least squares function (which 

equals 2 times the Degree of Redundancy) and the average of Qmin variance in 

MCM simulations (see Eq. (3-7)) 

 Theoretical value of the probability of the Error of Ist Kind in testing the presence 

of a gross errors (which equals 5 %) and the relative number of false Gross Error 

Detection in MCM simulations (in per cents) 
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5 SIMPLE LINEAR MODEL 

The main purpose of this chapter is testing Recon’s MCM functions on one simple linear 

model. Possible differences between values calculated from statistical theory (theoretical 

expectations) and MCM results proper can have many reasons, namely: 

 Generation of random numbers of the uniform (rectangular) distribution in the 

interval <0 ; 1> 

 Generation of random numbers with Normal distribution from random numbers 

obtained in the previous step 

 DR calculations done with limited accuracy 

 Limited accuracy of statistical tables (for example critical values of chi-square 

distribution)  

 Limited number trials in MCM simulations.  

In the first part will be tested basic model statistics which are 

1. Probability of the Ist kind error (GE is detected even if it is not present) 

2. Mean value of the Least Squares function Qmin 

3. Mean value of Qmin variance (the Second Central Moment of the distribution). 

Next parts concern  

4. Predicted uncertainty of results (reconciled and calculated unmeasured variables) 

5. Gross errors detectability (probability that a gross error of some size will be 

detected) 

In all cases theoretical (expected) values will be compared with values obtained by MCM 

(up to 10,000 repetitions (N)). 

5.1 Basic model statistics 

Let’s return to the simple model described in Example 4.1. This model has 6 measured 

variables and 4 linear equations. There are 2 Degrees of Redundancy. Results of MCM 

simulation for the Perturbance Factor = 1 are presented in the next table. 
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Tab. 5-1: Results of MCM simulation for Example 4.1.  

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 
Expected 5 2 4 5 2 4 5 2 4 5 2 4 

10 0.00 2.340 5.385 0.00 1.860 2.981 0.00 1.482 1.607 0.00 1.894 3.324 

100 1.00 1.664 2.542 4.00 2.041 3.737 4.00 1.980 2.475 3.00 1.895 2.918 

1000 5.50 1.982 4.041 3.60 1.956 3.627 3.90 1.915 3.462 4.33 1.951 3.710 

10,000 4.80 1.991 3.924 5.00 1.995 3.987 5.30 2.025 4.210 5.03 2.000 4.040 

 

Here 

N is   number of simulation runs 

Expected in this row are Expected (theoretical mean) values  

GED  number of cases when a Gross Error was Detected (in %) 

Qaver  the average value of Qmin 

VQaver  the average value of Qmin Variance. 

The expected value of Qmin for DoR = 2 is 2, the expected value of the Variance is 4 

(see Eqs. (3-6) and (3-7)). It is clear that the expected value of GED is 5 (probability of 

the GED test which also equals the probability of the Error of Ist kind of this test). Such 

table will be used for presenting of results throughout this Report).  

Results presented in Table 5.1 are visualized in next three figures. 

 

Fig. 5.1: Detected Gross Errors (%) for 3 runs and increasing number of simulations 
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Fig. 5.2: Averages of Qmin for 3 runs and increasing number of simulations. The 

expected value is 2. 

 

Fig. 5.3: Averages of Qmin Variance for 3 runs and increasing number of simulations. 

The expected value is 4. 

 

From the table and figures above can be seen that with increasing number of repetitions 

the values of % GED and Saver converge to the expected values. The values obtained 

from 10,000 simulations are very close to them. Also values obtained for 1000 



Data Reconciliation and Monte Carlo Method               ChemPlant Technology, s.r.o. 

    34 

 

repetitions may be acceptable (10,000 simulations can be time prohibitive for large 

industrial models). It is good to realize that our a priori information about measurement 

uncertainties (maximum errors) in practice are not precise, usually even the second digit 

is not sure. 

We can conclude that this simple linear example confirmed that MCM method contained 

in Recon gives reasonable results which are in agreement with GED theory (generation 

of pseudorandom errors is in agreement with chi-square testing by the so called Global 

test). It is not possible to analyze here the efficiency of MCM (a speed of approaching to 

the final result which requires the infinite number of repetitions). It is known that this 

approach is proportional to 1/(No of repetitions)1/2. With a great simplification we can say 

that for improving the MCM results’ precision by one order we must increase the No of 

repetitions by two orders. It is well known that MCM is not very fast algorithm.    

5.2 Uncertainty of results  

The uncertainty of results (reconciled measured values and calculated unmeasured 

values) is in RECON calculated by the error propagation method. For the Base Case 

(errorless) data set such results are shown in the next report: 

 

M A S S   F L O W R A T E S 

 Name             Type      Inp.value      Rec.value      Abs.error 

 ------------------------------------------------------------------ 

 S1               MC          100.100        100.100          1.308  KG/S   

 S2               MN           41.100         41.100          1.600  KG/S   

 S3               MC           79.000         79.000          1.249  KG/S   

 S4               MC           30.600         30.600          2.510  KG/S   

 S5               MC          109.600        109.600          2.621  KG/S   

 S6               MC           21.100         21.100          0.762  KG/S   

 S7               NO           59.000         59.000          2.066  KG/S   

 S8               NO           37.900         37.900          2.030  KG/S   

 

You can see that the Input values are identical with reconciled values . The Abs.error 

column contains uncertainties of results on assumption of normal distribution of errors 

and 95 % probability level. Between the Absolute Error (AE) and the standard deviation 

of results holds the simple relation: 

 

s  =  AE/1.960         (5-1) 
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where s = result’s standard deviation. It is therefore easily possible to transform the 

absolute errors to standard deviations 

The MCM proper in this case consists of the following steps: 

1. MCM simulation is done for required number of trials N (N=10.000 in our case, 

index is j)) 

2. From reconciled and other calculated variables (index i) is for individual variables 

calculated the sample mean Xi (arithmetic average) 

 

Xi = (∑Xij)  / N         (5-2) 

 

3. The sample variance si
2 is calculated according to 

 

si
2  =  (∑(Xij  -   Xi)

2) / (N – 1)       (5-3) 

 

The sample standard deviations are square roots of sample variances si
2.Results are 

presented in the next table: 

 

Tab. 5-2: Comparison of calculated (predicted) and MCM results  

Stream B.C.value 

[kg/s] 

s predicted 

[kg/s] 

s MCM 

[kg/s] 

AE predicted 

[kg/s] 

AE MCM 

[kg/s] 

S1 100.1 0.6662 0.6673 1.306 1.308 

S3 79.0 0.6358 0.6372 1.246 1.249 

S4 30.6 1.301 1.281 2.549 2.510 

S5 109.6 1.361 1.343 2.668 2.632 

S6 21.1 0.3836 0.3888 0.752 0.762 

 

where 

B.C. value flowrate value Base Case (errorless) 

s predicted standard deviation predicted by RECON (method of errors propagation) 

s MCM standard deviation obtained from MCM 
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5.3  Gross Errors detectability 

The method for calculating GE detectability was described in Subsection 2.4. The 

following study starts at the Base Case data (errorless data set which fulfill exactly the 

model) described in the preceding Subsection 5.2. For this data set we can find 

Threshold Values TV defined in Eq. (2-24). This information is available in Recon’s 

menu Calculate/Classification: 

 

Task: MC-2AB (Single-component balance) 

 

 REPORT ON CLASSIFICATION OF VARIABLES 

 ===================================== 

All unmeasured variables observable 

 

 R E D U N D A N T   M E A S U R E M E N T S 

  

 Type Variable      Adjustability           Threshold value           Unit 

                                     Beta: 90%    Beta: 95%Beta: 99% 

 ------------------------------------------------------------------------- 

  MF  S1                 0.346093        4.802        5.305        6.244  KG/S 

  MF  S3                 0.219605        4.648        5.135        6.044  KG/S 

  MF  S4                 0.163282        9.951       10.993       12.939  KG/S 

  MF  S5                 0.404285        9.951       10.993       12.939  KG/S 

  MF  S6                 0.046892        4.802        5.305        6.244  KG/S 

  

 Legend: 

  Adjustability   = relative cut of error due to reconciliation 

  Threshold value = gross error that will be detected with probability Beta 

  Beta            = probability of detecting Gross Error [%] 

  MF  Mass flow 

  

For example the GE (bias) in the measured flowrate equal to 4.802 kg/s will be detected 

with the probability 90 %. There were configured 5 tasks with the bias for every of five 

redundant variables, one by one. The MCM simulation was repeated 10,000 times for 

every task. Results (for Beta = 90 %) are shown in the next table: 
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Tab. 5-3: Comparison of calculated (predicted) and MCM results 

Stream B.C.value 

[kg/s] 

Beta 90 % 

[kg/s] 

MCM value 

[kg/s] 

GED% 

S1 100.1 4.802 104.902 89.86 

S3 79.0 4.648 83.648 89.54 

S4 30.6 9.951 40.551 90.20 

S5 109.6 9.951 119.551 90.34 

S6 21.1 4.802 25.902 89.59 

where 

B.C. value flowrate value Base Case (errorless) 

Beta 90 % Threshold Value for probability 90 % 

MCM value biased value of the flowrate for MCM simulation 

GED% % of MCM simulations when GE was detected. 

It is clear the expected value for the GED% column is 90. The comparison with the table 

column GED% shows that the MCM results are quite close to the theoretical (expected) 

value The maximum difference is 0.46 % for variable S3. 
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6 NONLINEAR MODELS 

6.1 Introduction 

The linear model (2-3) finds its application mostly in mass balance calculations (Yield 

Accounting, utilities distribution systems, etc.). Even in such systems there occur 

frequently needs of including some nonlinear equations. The first question is how to 

measure model nonlinearity.  

For a linear model holds that all first derivatives according to all variables are constant. 

For example, the mass balance of one node  

 

Fig 6.1: Mass balance of one node 

with one input stream and two output streams is written (compare with Eq. (2-4). 

 

F1 – F2 – F3 = 0         (6-1) 

 

Matrix of first derivatives of this model according to F1, F2 and F3 is 

 

  1   0   0 

  0  -1   0          (6-2) 

  0   0  -1 

 

This is the incidence matrix of the flowsheet in Fig. 6.1 which contains only constants – 

this model is linear. Second derivatives of matrix (6-2) are all zero. 

The nonlinearity of models can be characterized by the Hessian matrix. Let’s have a 

scalar function of a vector x of n variables f(x). The Hessian matrix is the symmetric 

matrix (n x n).  
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Or  

 

It is clear that for linear functions the Hessian matrix is zero matrix. In other words, the 

nonzero Hessian is the measure of model nonlinearity.  

The simplest case of nonlinear models is the bilinear model. Left suppose for example 

that the enthalpy H of a stream is calculated according to the function 

 

H = F cp t          (6-3) 

 

where F is the mass flowrate, t is temperature and cp (constant) is the mean heat 

capacity of the stream . 

 

The Hessian matrix is then  

 

  0 ; cp 

  cp ; 0           (6-4) 

 

The Hessian matrix in this case is nonzero.  

The another nonlinear example is the component balance in the form 

 

m1 = F c1          (6-5)  
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where m1 is the mass flow of the component 1 (concentration c1) and F is the overall 

mass flowrate.  

The Hessian matrix is then  

 

  0 ; 1 

  1  ; 0           (6-6) 

 

Bilinear models are very frequent in engineering (component and heat balancing). They 

belong to models with the weak nonlinearity. 

There exist more nonlinear models, containing for example logarithmic or exponential 

functions. Quite dangerous can be the Logarithmic Mean Temperature Difference 

(LMTD) which is even not defined in the quite common case of equal temperature 

differences. There exist also complex models for turbine efficiencies, Stodola equations, 

etc. A significant problem can arise when derivatives are not continuous (for example at 

phase changes). Luckily some strongly nonlinear calculations frequently need not be 

included in the main model and can be calculated after the DVR proper is completed 

(data postprocessing in Recon). This recommendation holds for example for turbine 

efficiencies and heat transfer coefficients. 

Further on we will present in the next three Sections results of MCM simulations for 

models of increasing nonlinearity and size. Three MCM results will be presented: 

GED number of cases when a gross error was detected (in %). As in all cases 

no gross error was present, this is the percentage of Errors of the Ist kind. 

The expected value is 5 % 

Qaver the average value of the Least Squares function. The expected value 

equals the Degree of Redundancy (see Table 3-1).  

VQaver the average value of the Least Squares function variance. The expected 

value equals the Degree of Redundancy times 2. This is the second central 

moment of the Chi-square distribution 

Further in this Chapter we will study 12 models of different types and complexity. In the 

next table is the summary of basic characteristics of models which are named by their 

Subsection in this report.  

6.2 Bilinear models 

In this subsection two small bilinear models will be analyzed: 
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 A crude oil preheat system 

 System of 3 distillation columns (multicomponent balance) 

6.2.1 Heat balance – Crude oil preheat 

This is the standard Recon’s Demo example E-12. 

 

The crude oil is heated by contact with the kerosene stream, splits and is further heated 

by the light gas oil and heavy gas oil. 

This model has  

18 measured variables  

7 model equations 

5 Degrees of Redundancy. 

Results are shown in the next table: 

Tab. 6-1: Results of MCM simulation, Subsection 6.2.1. 

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 5 10 5 5 10 5 5 10 5 5 10 

10 10.00 6.174 11.709 0.00 3.592 6.781 20.00 5.427 13.117 10.00 5.064 10.536 

100 3.00 5.332 9.169 2.00 4.727 8.197 5.00 4.670 10.120 3.33 4.910 9.162 

1000 5.30 4.950 10.203 6.10 4.935 10.562 3.80 4.839 8.351 5.07 4.908 9.705 

10,000 5.20 5.005 10.112 5.20 5.016 10.195 5.00 4.967 10.204 5.13 4.996 10.170 
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6.2.2 Multicomponent balance – LPG separation train 

This is the standard Recon’s Demo example MC-6. 

 

This model has  

38 measured variables (flowrates and concentrations) 

23 model equations  

5 chemical components 

18 Degrees of Redundancy. 

Results are shown in the next table: 

Tab. 6-2: Results of MCM simulation, Subsection 6.2.2.  

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 18 36 5 18 36 5 18 36 5 18 36 

10 0.00 17.403 26.020 0.00 13.268 37.549 0.00 21.055 29.407 0.00 17.242 30.992 

100 7.00 19.170 37.796 5.00 17.807 33.647 1,00 17.774 29.126 4.33 18.250 33,523 

1000 6.30 17.924 40.148 5.60 18.106 36.702 6.20 18.266 38.848 6.03 18,099 38.566 

10,000 5.73 18.124 38.932 5.51 18.157 38.871 5.74 18.196 39.050 5.68 18.159 38.951 

6.3 Small General models 

5 small general models will be treated here. They are cutouts from larger industrial 

models: 

 Steam generator in a nuclear powerplant 
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 Steam to steam heat exchanger in a supercritical boiler 

 Component and heat balance of a bisector air preheater 

 A simple model of a coal fired boiler with air preheat 

 A simple model NG gathering and distribution with hydraulic calculations 

6.3.1 Steam generator in a nuclear powerplant 

This is the standard Recon’s Demo example E-4. 

 

 

This model has  

10 measured variables (flowrates, pressures and temperatures) 

4 model equations 

2 Degrees of Redundancy. 

Results are shown in the next table: 

 

Tab. 6-3: Results of MCM simulation, Subsection 6.3.1.  

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 2 4 5 2 4 5 2 4 5 2 4 

10 10.00 1.858 5.254 0.00 1.860 2.426 0.00 2.221 2.937 3.33 1.980 3.539 

100 3.00 1.997 2.927 5.00 2.076 3.751 7.00 2.241 4.753 5.00 2.105 3.810 

1000 4.80 2.014 3.777 5.10 2.019 4.253 4.40 1.870 3.949 4.77 1.968 3.993 

10,000 5.10 2.006 4.069 5.10 1.993 3.926 5.10 2.023 4.095 5.10 2.007 4.030 
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6.3.2 Steam to steam supercritical heat exchanger 

This exchanger serves for control the reheat steam temperature by contact with the 

superheated main steam. The pressure of the main steam is supercritical (27 MPa).  

 

 

This model has  

9 measured variables (flowrates, pressures and temperatures) 

4 model equations 

2 Degrees of Redundancy. 

Results are shown in the next table: 

 

Tab. 6-4: Results of MCM simulation, Subsection 6.3.2.  

  Run Average 

N 1 2 3 

 
GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 2 4 5 2 4 5 2 4 5 2 4 

10 0.00 2.343 3.435 0.00 2.042 2.097 0.00 1.953 1.307 0.00 2.113 2.280 

100 3.00 1.917 3.830 4.00 1.894 3.972 3.00 1.849 3.345 3.33 1.887 3.716 

1000 5.30 2.013 3.840 5.40 1.999 4.050 5.40 1.968 4.309 5.37 1.993 4.066 

10,000 5.00 2.019 4.046 4.80 1.958 3.855 4.90 2.000 4.008 4.90 1.992 3.967 

 

6.3.3 Bisector rotary air preheater 

This exchanger serves for preheat of air by contact with flue gases. The model 

combines the multicomponent balance with heat balance. This makes possible to 

calculate the AIRLEAK flowrate which is important for preheater’s diagnostics. 
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This model has  

12 measured variables (flowrates, pressures and temperatures) 

12 model equations 

6 chemical components 

1 Degree of Redundancy. 

Results are shown in the next table: 

 

Tab. 6-5: Results of MCM simulation, Subsection 6.3.3.  

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 1 2 5 1 2 5 1 2 5 1 2 

10 0.00 0.757 0.469 10.00 1.381 3.148 20.00 1.612 4.147 10.00 1.250 2.588 

100 11.00 1.173 2.805 1.00 0.933 1.442 7.00 1.061 2.137 6.33 1.057 2.128 

1000 4.90 1.021 1.948 4.80 1.018 2.188 4.90 0.998 1.767 4.87 1.012 1.968 

10,000 4.90 0.993 1.918 4.90 0.998 1.922 5.10 0.997 2.043 4.97 0.996 1.961 

 

6.3.4 Coal boiler with air preheat 

A little bit more complex is the model of a coal fired steam generator with air preheat 

(Demo example E-16). In the FIREBOX is burned coal, the released heat is transferred 
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to the steam generator (SG). Flue gases (FGHOT) transfer the heat (QBOIL) to the air 

(AIRCOLD). 

 

 

This model has  

22 measured variables (flowrates, pressures and temperatures) 

18 model equations 

11 chemical components 

3 Degree of Redundancy. 

Results are shown in the next table: 

 

Tab. 6-6: Results of MCM simulation, Subsection 6.3.4.  

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 3 6 5 3 6 5 3 6 5 3 6 

10 10.00 3.047 9.113 0.00 3.100 4.923 0.00 3.060 3.613 3.33 3.069 5.883 

100 6.00 2.960 7.502 6.00 2.956 5.746 4.00 3.012 5.087 5.33 2.976 6.112 

1000 3.90 2.901 5.354 4.30 2.855 5.185 6.20 3.144 6.665 4.80 2.967 5.735 

10,000 5.10 2.991 6.138 4.70 3.020 5.924 5.20 3.021 6.066 5.00 3.011 6.043 

 

6.3.5 Natural gas gathering and transportation with hydraulic calculations 

The mass balance of a gas is complemented by hydraulic calculations (momentum 

balancing which includes pressure drops in individual pipelines. 
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This model has  

10 measured variables (flowrates, pressures and temperatures) 

19 model equations 

4 Degrees of Redundancy. 

Results are shown in the next table: 

 

Tab. 6-7: Results of MCM simulation, Subsection 6.3.5.  

  Run Average 

N 1 2 3 

 
GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 4 8 5 4 8 5 4 8 5 4 8 

10 0.00 3.298 4.884 0.00 3.124 3.780 0.00 2.628 1.107 0.00 3.017 3.257 

100 6.00 3.723 9.196 3.00 3.938 5.869 4.00 4.160 7.764 4.33 3.940 7.610 

1000 4.70 3.908 8.359 5.50 4.180 8.620 6.80 4.103 9.490 5.67 4.064 8.823 

10,000 5.38 4.087 8.516 6.03 4.207 8.870 5.48 4.133 8.501 5.63 4.142 8.629 

 

6.4 Models of industrial size 

Five models of industrial size will be analyzed: 

 Coal fired boiler (powerplant 660 MWe) with accessories (2 trisector air 

preheaters) 
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 Steam cycle (steam turbines, heaters, condensers, etc.) 

 Vacuum distillation column of heavy crude oil  

 Monitoring heat power of a nuclear reactor 

 Natural gas transport and distribution system 

6.4.1 Coal fired supercritical boiler 

This model servers for monitoring of boiler’s KPIs (efficiency, losses, etc.). The burning 

of coal is modeled as the reaction invariant chemical reactor. Besides that the model 

contains auxiliaries, namely two trisector air preheaters. 

 

 

This model has  

34 measured variables (flowrates, pressures and temperatures) 

171 model equations 

11 chemical components 

7 Degree of Redundancy. 

Results are shown in the next table: 
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Tab. 6-8: Results of MCM simulation, Subsection 6.4.1.  

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 7 14 5 7 14 5 7 14 5 7 14 

10 10.00 7.963 18.784 0.00 7.642 6.692 0.00 5.908 5.360 3.33 7.171 10.279 

100 4.00 6.616 11.624 2.00 6.703 11.170 4.00 6.988 15.017 3.33 6.769 12.604 

1000 4.80 7.015 25.895 4.60 7.137 24.727 5.41 8.160 18.215 4.94 7.437 22.946 

10,000 5.32 7.924 14.120 5.48 8.158 18.332 5.61 9.005 16.813 5.47 8.362 16.388 

 

6.4.2 Steam cycle of a powerplant 

This model servers for monitoring of the Heat Rate of the whole steam cycle. Monitored 

are also parameters of all substantial equipment (turbines, heaters, condenser, pumps). 

 

 

This model has  

214 measured variables (flowrates, pressures and temperatures) 
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255 model equations 

1 chemical component (H2O) 

30 Degrees of Redundancy. 

Results are shown in the next table: 

 

Tab. 6-9: Results of MCM simulation, Subsection 6.4.2.  

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 30 60 5 30 60 5 30 60 5 30 60 

10 10.00 31.174 83.350 0.00 27.105 19.604 10.00 30.178 75.555 6.67 29.486 59.503 

100 6.00 30.110 59.301 6.00 30.025 70.027 5.00 31.089 58.133 5.67 30.408 62.487 

1000 5.30 29.424 60.656 4.80 29.968 63.336 5.10 29.982 59.796 5.07 29.791 61.263 

10,000 6.00 30.220 65.430 5.64 30.256 63.353 5.84 30.289 64.885 5.83 30.255 64.556 

 

6.4.3 Vacuum distillation of heavy crude oil 

This model serves for setting up mass and heat balance of a vacuum column including 

heavy crude preheat and generation of steam. There are 24 heat exchangers of 3 kinds: 

heat exchange between hydrocarbon streams, water coolers and steam generators. 
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This model has  

58 measured variables (flowrates, pressures and temperatures) 

32 model equations 

24 heat exchangers (coolers, heaters, steam generators) 

9 Degrees of Redundancy. 

Results are shown in the next table: 

 

Tab. 6-10: Results of MCM simulation, Subsection 6.4.3.  

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 9 18 5 9 18 5 9 18 5 9 18 

10 20.00 12.358 31.894 0.00 8.334 11.837 20.00 10.312 19.081 13.33 10.335 20.937 

100 8.00 9.134 22.464 5.00 9.322 16.266 6.00 9.500 16.654 6.33 9.319 18.461 

1000 4.20 8.866 17.180 4.10 8.686 17.143 4.60 9.066 17.273 4.30 8.873 17.199 

10,000 5.40 9.100 18.830 5.30 9.042 18.220 5.70 9.100 19.320 5.47 9.081 18.790 
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6.4.4 Steam generation system of a NPP 

This model serves for monitoring of a Nuclear Power Plant heat power. The heat 

balance is based on measured flows of the Feed Water, generated Steam and the 

Purge streams. 

 

This model has  

33 measured variables (flowrates, pressures and temperatures) 

15 model equations 

4 steam generators 

10 Degrees of Redundancy. 

Results are shown in the next table: 
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Tab. 6-11: Results of MCM simulation, Subsection 6.3.4. Expected Saver = 0.546 

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 10 20 5 10 20 5 10 20 5 10 20 

10 0.00 7.904 8.979 0.00 8.497 14.359 0.00 10.188 11.213 0.00 8.863 11.517 

100 5.00 10.376 19.426 4.00 10.634 19.932 3.00 10,624 16.183 4.00 10.544 18.514 

1000 4.70 9.987 20.633 5.20 10.037 20.969 5.30 10.079 21.813 5.07 10.034 21.139 

10,000 5.00 10.000 20.070 5.10 9.971 20.610 5.30 10.100 20.610 5.13 10.024 20.430 

 

6.4.5 Natural gas transport and distribution system 

This model serves for monitoring the mass and momentum balance of the natural gas 

transport and distribution system. It includes two pressure reduction steps. The mass 

balance of a gas is complemented by hydraulic calculations (momentum balancing 

which includes pressure drops in individual pipelines). 

 

This model has  

26 measured variables (flowrates, pressures and temperatures) 
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52 model equations 

7 Degrees of Redundancy. 

Results are shown in the next table: 

Tab. 6-12: Results of MCM simulation, Subsection 6.4.5.  

  Run Average 

N 1 2 3 

  GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver 

Expected 5 7 14 5 7 14 5 7 14 5 7 14 

10 0.00 8.050 10.900 0.00 6.774 3.841 0.00 6.876 9.665 0.00 7.233 8.135 

100 5.00 7.010 15.670 6.00 7.304 12.461 2.00 6.728 11.728 4.33 7.014 13.286 

1000 4.30 6.938 13.752 6.20 7.145 14.521 5.60 7.137 15.312 5.37 7.073 14.528 

10,000 5.14 7.056 14.316 5.13 7.039 14.235 4.85 7.057 14.239 5.04 7.051 14.263 

6.5 Models’ summary  

In the next table is the summary of main model parameters: 

Tab. 6-13: Main model’s parameters Models are named by their Sections in Chapter 6 

Sect. Task Nmeas Neq DoR Ncomp Func 

[%] 

Tunc  

[K] 

Ctime 

[s] 

6.2.1 Crude oil preheat 18 7 5 1 1 – 5 1 – 6 0.1 

6.2.2 LPG separation 38 23 18 5 2 – 6 – 0.1 

6.3.1 Steam generator 10 4 2 1 2 – 5 1 0.1 

6.3.2 Steam to steam exch. 9 4 2 1 3 3 0.1 

6.3.3 Air preheater 12 12 1 6 2 1 – 2 0.2 

6.3.4 Simple coal boiler 22 18 3 11 1 – 5 1 – 3 0.4 

6.3.5 NG gathering 10 19 4 1 5 – 0.1 

6.4.1 Coal fired boiler 34 171 7 11 5 – 10 1 – 5 3 

6.4.2 PP steam cycle 214 255 30 1 1 – 10 1 – 2% 3 

6.4.3 Vacuum distillation 58 32 9 1 1 – 5 2 – 3% 0.1 

6.4.4 NPP steam generation 33 15 10 1 2 – 4 1 0.1 

6.4.5 NG distribution 26 52 7 1 2 - 10 – 0.2 
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Legend: 

Nmeas  Number of measured values 

Neq  Number of model equations 

DoR  Degree of redundancy 

Ncomp  Number of chemical components 

Func  Uncertainty of measured flowrates 

Tunc  Uncertainty of measured temperatures (mostly in K), two cases in % of oC 

Ctime typical computing time for 3 iterations of SL (in practice the time can be 

doubled by the following SQP step). All calculations in this Chapter were 

done with the SL and then with the SQP method 

In the next table are summarized main results of MCM for 12 models from Table -13. 

They are averages of 3 runs of MCM simulations with 10,000 repetitions. 

Tab. 6-14: Main results of Chapter 6 

Sect. Task GED Ratio DoR Qaver Ratio 2*DoR VQaver Ratio 

6.2.1 Crude oil preheat 5.13 1.026 5 4.996 0.999 10 10.170 1.017 

6.2.2 LPG separation 5.68 1.136 18 18.159 1.009 36 38.951 1.025 

6.3.1 Steam generator 5.10 1.020 2 2.007 1.004 4 4.030 1.008 

6.3.2 Steam heat exchanger 4.90 0.98 2 1.992 0.996 4 3.967 0.992 

6.3.3 Air preheater 4.97 0.994 1 0.996 0.996 2 1.961 0.980 

6.3.4 Simple coal boiler 5.00 1.000 3 3.011 1.004 6 6.043 1.007 

6.3.5 NG collection 6.63 1.326 4 4.142 1.031 8 8.629 1.079 

6.4.1 Coal fired boiler 5.47 1.094 7 8.362 1.195 14 16.388 1.171 

6.4.2 PP steam cycle 5.83 1.166 30 30.255 1.008 60 64.556 1.076 

6.4.3 Vacuum distillation 5.47 1.094 9 9.081 1.009 18 18.790 1.044 

6.4.4 NPP steam generation 5.13 1.026 10 10.024 1.002 20 20.430 1.022 

6.4.5 NG distribution 5.04 1.008 7 7.051 1.007 14 14.236 1.017 

 Averages of Ratios 

deviations from 1   

- 0.077 - - 0.021 - - 0.041 

 

Legend: 

GED  % of cases with detected gross error. Expected value is 5 % 
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Ratio  ratio Average value/Expected (theoretical) value  

Qaver Least Squares value. Average of 3 runs of MCM simulations with 10,000 

repetitions. The Expected value is DoR 

VQaver Variance of Least Squares value. Average of 3 runs of MCM simulations 

with 10,000 repetitions. The Expected value is 2*DoR 

In the last row of the table are averages of deviations from the expected value which is 1 

- [ABS(Ratio - 1)]. It is clear that the expected value of this deviation is zero. Results can 

be also compared with analogical values found in Chapter 5 – Table 5-1. In the next 

Tab. 6-15 we multiply ratios by 100 to get values in per cents.  

 

Tab. 6-15: Comparison of average absolute deviations in % for linear and nonlinear 

models 

 Deviation 

GED [%] 

Deviation 

Qaver [%] 

Deviation 

VQaver [%] 

Linear model (Table 5-1) 0.6 0.0 1.0 

Nonlinear models (Table 6-14) 7.7 2.1 4.1 

 

It can be seen that nonlinear models has in all cases significantly higher ratios. But in 

practice, the ratios for nonlinear models are still very small. For example, the highest 

deviation is 7.7 % for the Gross Error Detection ((Error of the Ist kind). This means that 

the average absolute value was in the interval 5 ± 5*0.077 = 5 ± 0.38. Such distance 

from the expected value which equals 5 is negligible. Our information about 

measurement errors is not very precise, we sometimes can’t guarantee even the value 

of the first digit of the standard error sigma. The same holds also for Qaver and for 

VQaver. 

The conclusion is that even if there is some difference between behavior of typical linear 

and nonlinear models, this difference is not significant from the practical point of view.   
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7 INFLUENCE OF MEASUREMENTS’ UNCERTAINTIES 

As was already shown earlier, aside of model’s nonlinearity also measurements’ 

uncertainties play role in statistical treatment of process data. It is clear that the 

linearization of a curve is justified only in a small vicinity of the measurement point. With 

increasing measurement errors also errors brought by linearization grows. In other 

words, for strongly nonlinear function the linearization can be justified only in the small 

area around the measured value. In this subsection we will study this problem on 2 small 

bilinear models from the Subsection 6.1. For every model will be tested several model 

versions differing in increasing values of measured values’ uncertainties. 

7.1 Crude oil preheat  

This is the Demo task E-12 used in the Section 6.2.1. The parameters of model versions 

are presented in the next table. The uncertainties of flowrates are changed from 1 % to 

20 % of the measured value. The uncertainties of temperatures are changed from 1 to 

20 K of the measured value For all model versions were calculated 1,000 simulations. 

 

Version 
UFlow 

[kg/s] 

UTemp 

[K] GED [%] Qaver VQaver 

Expected value  - - 5 5 10 

1 1 %  1 5.8 5.195 10.558 

2 3 % 3 5.0 5.002 9.971 

3 5 % 5 4.5 4.995 9.582 

4 10 % 10 3.9 4.902 9.060 

5 20 % 20 4.8 5.194 9.810 

 

where  Version Version of uncertainty  

  UFlow  uncertainty of flowrates  

  UTemp uncertainty of temperatures 

  GED  Gross error was detected (Error of Ist Kind) 

  Qaver  average value of Qmin 

  VQaver  average value of Qmin varaince



Data Reconciliation and Monte Carlo Method               ChemPlant Technology, s.r.o. 

    58 

 

 

7.2 Multicomponent balance – LPG separation train  

This is the Demo task MC-6 used in the Section 6.2.2. The parameters of model 

versions are presented in the next table. The uncertainties of flowrates were changed 

from 1 % to 20 % of the measured value. For all model versions were calculated 1,000 

simulations. 

 

Version UFlow [kg/s] GED [%] Qaver VQaver 

Expected 

value  
- 5 18 36 

1 1% 5.1 18.028 35.835 

2 3% 5.2 18.132 38.770 

3 5% 4.4 17.712 37.384 

4 10% 5.5 18.221 36.669 

5 20% 4.6 18.002 37.970 

 

where  Version Version of uncertainty  

  UFlow  uncertainty of flowrates  

  UTemp uncertainty of temperatures 

  GED  Gross error was detected (Error of Ist Kind) 

  Qaver  average value of Qmin 

  VQaver  average value of Qmin variance

 

7.3 Conclusions 

From two tables in this Chapter is clear that for the two bilinear models can be seen that 

there is no evident significant influence of measurement uncertainties on basic statistical 

characteristics of the data reconciliation process. 
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8 USING MCM FOR TESTING MODEL ROBUSTNESS 

For on-line installations of DR systems in industry which are running 24 hours 7 days a 

week is important their robustness. In an on-line running is too late to solve problems 

caused by insufficient numerical properties of software, changes in plant hardware 

configuration, etc. MCM is therefore good for testing DR software before the DR system 

proper is installed in harsh industrial conditions.  

The most simple method for testing DR system robustness are MCM functions of 

RECON (recall Chapter 4). There is the option of simulating gross errors by multiplying 

all uncertainties of the model by the Perturbation Factor which is in the range 1 – 5 

(recall that PF = 1 means standard random errors). Complete results of MCM can be 

saved to the MS Access DB from which problematic data sets can be downloaded and 

analyzed off line. 

This chapter is not systematic, only informative. On four previously described tasks (2 

small and 2 of industry size) will be shown typical behavior of models in presence of bad 

data. 

The following characteristics of results will presented: 

PF   Perturbation Factor 

Iter  average number of iterations (SL + SQP) 

GED  number of cases when Gross Error was detected [%] 

Saver Average value of the Status of data quality (Status > 1 means that GE was 

detected) 

Smax maximum value of the Status of data quality 

Nnotconv number of cases when calculation did not converged [%] 

In 2 cases the number of MCM repetitions was 10,000,- (Sections 8.1 and 8.2), in 2 

cases (Sections 8.3 and 8.4) the MCM repetitions were 1000. 
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8.1 Crude oil preheat 

Model from Subsection 6.2.1.  

PF Iter GED [%] Saver Smax Nnotconv [%] 

1 4.32 4.63 0.45 2.44 0.00 

2 4.87 73.9 1.81 9.28 0.00 

3 4.97 93.80 4.06 23.66 0.00 

5 5.01 99.36 11.52 92.19 0.00 

 

8.2 LPG separation 

Model from Subsection 6.2.2.  

PF Iter GED [%] Saver Smax Nnotconv [%] 

1 3.00 6.7 0.636 1.54 0.00 

2 3.05 98.7 2.591 15.46 0.00 

3 3.26 100.0 6.076 77.08 0.00 

5 3.67 100.0 18.822 201.59 0.00 

 

8.3 Steam cycle of a powerplant 

Model from Subsection 6.4.2 

PF Iter GED [%] Saver Smax Nnotconv [%] 

1 7.66 5.6 0.667 1.21 0.00 

2 7.96 100.0 2.94 6.88 0.00 

3 8.69 100.0 8.19 23.18 0.50 

5 9.65 100.0 19.84 68.97 4.50 
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8.4 Vacuum distillation of heavy crude oil 

Model from Subsection 6.4.3 

PF Iter GED [%] Saver Smax Nnotconv [%] 

1 4.97 5.9 0.543 1.778 0.00 

2 5.84 88.9 2.092 6.772 0.00 

3 6.16 98.9 4.727 16.508 0.00 

5 7.17 100.0 13.801 42.779 0.00 

 

8.5 Conclusions 

From results of this Chapter can be seen that models in Sections 8.1, 8.2 and 8.4 are 

well robust. The model in Section (8.3) (Steam Cycle) has problems with the 

convergence in the case of MCM Perturbation Factor 3 and 5 (the calculation did not 

converged in 0.5 % of runs in the case of PF = 3 and in 4.5 % of runs in the case of PF = 

5).  

The original uncertainties of Flowrates in this case were 1 - 10 % of the measured value 

and the temperature uncertainties were in the range 1 – 2 % in the Celsius temperature 

scale (see Table 6-13). In the case of the Perturbation Factor 5 this means very bad 

input data for calculation (for example flowrate errors up to 50 % of the Base Case 

value). High temperature perturbations can also lead to phase changes in water/steam 

streams. 

It should be noted here that RECON’s MCM module enables one to save all MCM 

repetitions data to the MS Access Database. Data can be then manually imported and 

the cause of problems can be revealed.   
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9 DISCUSSION AND CONCLUSIONS 

The main purpose of Chapter 5 was to verify that MCM methods used in RECON 

(generation of random variables, etc.) are sound. Calculations revealed that it is needed 

to make 10,000 MCM repetitions to get reliable results. The MCM analysis of a simple 

linear model has confirmed that the DRV methodology works and the results’ precision 

agrees with MCM results (Table 5-2). Also the Gross Errors Detectability method gives 

good results (Table 5-3). 

The core of the report is in Chapter 6. The spectrum of 12 nonlinear models covers 

typical DRV tasks we can meet in Chemical and Power Industries. Models’ 

characteristics are shown in Table 6-13. The typical type of nonlinearity is a product of 

two variables (bilinear models, namely multicomponent and heat balances). The 

nonlinearity in all cases did not caused significant deviations caused by models’ 

linearization during the DRV solution (Table 6-14).    

In Section 2.5 was proposed the practical and simple measure of models’ nonlinearity by 

Eq. (2-25). It is the relative improvement of the Least Squares function calculated by the 

Successive Linearization and then improved by the SQP method. 

In Chapter 7 were analyzed two bilinear models as concerns the influence of 

measurement uncertainties on statistical results of DRV. It was concluded there that 

there is no evidence of significant influence of measurement uncertainties on basic 

statistical characteristics of the data reconciliation process. 

In Chapter 8 was on 4 examples shown that MCM is a good method for testing models’ 

robustness. Random errors of measurement were perturbed up to 5 times of the original 

measurement uncertainties to test models’ robustness.         
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